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D)EFORMIATION OF A LIQUID) SURFACE BV AN IMPINGING GAS JET Q~

11A AtMARC \ ANDI N ItR01 ( K

Abstract. I he deformation of ;. liquid surface dlue ito an impinging t~o-dimensioiial jlo is onsidered
assuming potential flio% rhis problem %as solsed numrcuicalls for small salLI' it the F-Oilje riumhtr A h%
Olmtsteaid id lRatror , Iqh4 8s using a different nunivri~dl jiroitedirC 'At Nole the prohlrm t. ir larger
% alue, of A up to A. -- 6. We show% that the profile oif the liquid surface :ontain% a train of % aes far aA as
from the impinging~ let

1. Introduction. In an interesting theoretical and numerical work, Olmstead and
.' Ray nor ( 1964) examined the impact of a vertical jet on a stationary horizontal liquid

surface isee Fig. 1). They derived the integro-dilfferential system i .,1)-l 1.3) below for
the complex velocity fir I on the free surface of the liquid. They simplified it by replacing
sin 6 by 6 in 11.2) and then solved the resulting system nunmerically. Their numerical
scheme converges, but only with few mesh points and for relatively small '-a es of A,
with indication of a rapid growth in the error as A increases.

We shall derive a numerical scheme different from theirs to solve 1 1,-11.3iisee
§ 2'1. It enables us to compute the solution for arbitrar% % alues of A up to Ak A -6.

Our computations shoA that the liquid surface contains a train of' wavtes far from the
jet (see Figs. I and 2). These results are discussed in § 3

The problem is characterized by the velocity V, and the % idth h' of the jet at Y - X.
the gas density p,;, the liquid density p, and the acceleration of gQrasit g. Taking hl 7r
as the unit length and V, as the unit velocit%. Olmstead and Ra% nor (1964 1 derived the
follo%% ing nonlinear tntegro-ditlercntial equation for the -oniplex %elocit% e on the free
surface (J1.:

i r I tr -'H- I i 1%i onCT

11.21 Asi r)~l -r)- v ~ -r ~ on J. E L L..snti 3 dr~ 2' 1 r

lr;' NOV 27 1981
11.3 1 rI ~--5-j--r'" on C'12.

Here A is the Froude number defined by

11.4) A =1p, Vf~p, gb.

The variable r in (1.1 i-I1.3) is related to the potential function d on 02L by the formula

e15 (I -~ r)12, r E 1,+1I

2. Numerical procedure. To solve (1 1)-1 1.3) Olmstead and Raynor (1964) intro-
duced the N mesh points r, defined by
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FuI. I Profile of the jet and the liquid surface for A 0 (6. The at et and a %kth of the tio are alto %hOh n
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Approximating sin H by 0 in 1 .2 1 and discrelizing 1 .1 and I 2. theN obtained a
system of Ai equations with N unknowns 7-1  tr), l 1 1, . , N. This system was
solved by Newton's method, using the solution corresponding to A ( 0 as the initial
guess. Converged solutions of the algebraic system of equations for N = 2(1 and A P I

wete presented in their paper. In addition, they gave an estimate of the error based on
calculat!or of the vertical force on the liquid surface. It showed that the error grows
rapidly with A, reaching 8% for A = 1. A sniall part of this error can be attributed to
the approximation sin 0 - 0. However, the main error in their solutions come from
the fact that their liquid profiles do not contain waves. Numerical experiments show
that Olmstead and Raynor's numerical procedures always give solutions of the discret-
ized equations without waves. However, for any A >t), there exists a critical number
of mesh points N,.(A ) such that the scheme converges for N < N, (A ) and diverges for
N > N, IA ). In addition the function N, (A ) decreases as A increases.

Equations (1.1 (-(1.3) are reminiscent of the integro-diflerential equation derived
by Vanden-Broeck and Tuck (1977) and Vanden-Broeck, Schwartz and Tuck (1978)
to describe the flow behind a moving body. Using the analogy between these two
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problems and following the general philosophy of Vanden-Broeck, Schwartz and
Tuck's method, the following successful numerical scheme was derived.

First we use (0.5 to rewrite 11. 1)- 1.31 in terms of the new independent %.ariable
6. Next we introduce the N mesh points h, given by
12.2 1 (b, = i I - I }/F_, I = 1,. • -, N.

Here E is the interval of discretization. We also introduce the N corresponding
unknowns,

(2.3) 1tr4,f, I = 1., N.

By symmetry 81 = 0, so only N - I of the 8, are unknown. We shall also use the N - I
intermediate mesh points 'bk. 1,2 given by

(2.4) ,2= (6 + d, I, I1=1,." ,N-I.

We now compute

in terms of 0, by applying the trapezoidal rule to the integral in 0. 11 rewritten with the
new variable, with the mesh points .,1. The symmetry of the discretization enables us
to compute the Cauchy principal value as if it were an ordinary integral. The error
inherent in approximating the integral h% an integral over a finite interval was found
to be negligible for NE large enough. Then from r. 1 2 we compute r..(61.1 2) and
from HI we compute 01. 1 2 In the discretization we have used five-point difference
formulas and four-point interpolation formulas and obtain the results in terms of H1.

Next we substitute into f 1.2) the expressions so obtained for 71 I ,, 7o,. I ) and
2. ,at the N --2 points 61 ,I = 2 --.. N-- 1. Thus we obtain a system of A' 2

nonlinear algebraic equations invol'ving the N -- I unknowns 01, 1 2. - •, N. The last
equation is obtained by expressing 02 in terms of 61, 0, and P., by a three-point Lagrange
extrapolation formula.

For each value of A, the N - 1 equations are solved by Newton's method %% ith t8, = 0
as the initial guess. The remaining part of the computations follows closely Olmstead
and Raynor's work. The scheme was found to be rapidly convergent and i solution of
the algebraic equations with an error less than 10 "; was obtained in a fe, iterations.
For each value of A and NE, the value of E was decreased, and correspondingly N, was
increased, until the computed profiles remained unchanged, at least to graphical
accuracy. The procedure was then repeated for large values of NE until the result,
became independent of NE. Most of the results presented in the next section w,.Crc
obtained with E = 0.3 and N - 1(0.

3. Discussion of the results. Typical profiles o' 'he liquid surface fIr A - 0.6 and
A 5 are presented in Figures 1 and 2. In both figures the horizontal scale has been
shrunk to show clearly the train of uniform waves far from the let. It is convenient to
characterize these waves by their steepness s defined as

L13.1)

I lere Av is the difference of ordinate between a crest anti a trough and I is thc
wavelength. The values of s are presented as a function of A in Figure 3. As A tends
to zero, the steepness s tends to zero and the waves can be approximated by the sine
waves of linear theory (see Fig. 1). It can easily be verified that the %aclength I of

L~~ "~ L



DEFORMATION OF A I I)t 'll) SI RI- A(iI 019

/-

*1va/

SIDst c

FiE;. 3. Values of the steepness s as a function of the Froude numbe, k.

the waves satisfies the dispersion relation

(3.21 L =Ar7 tanh -- as A--,).

As A increases, the steepness s increases and the waves start to develop sharp
troughs and broad crests (see Fig. 2). These waves behave qualitatively like gravity
surface waves of finite amplitude turned uptside-down. This could be expected since
the complete problem can be interprced as a negative-gravity water-wave problem
turned upside-down (Tuck (1975)). For steep waves the velocity is small at the troughs
and large at the crests. Since the mesh points correspond to equal increments in the
velocity potential, they are quite dense near the crests and sparse in the vicinity of the
troughs. This nonuniform spacing of the mesh points for A large limits the accuracy of
the present numerical scheme. Similar difficulties were encountered before by Schwartz
and Vanden-Broeck (1979) and Chen and Saffman (1980). Accurate solutions for
A >A, could not be computed even with N = 120.
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